
http://www.wiley.com/buy/9780470277744

Maclennan c16.tex V2 - 10/03/2008 5:48pm Page 497

C H A P T E R

16
Programming SQL Server

Data Mining

The concept of data mining as a platform technology opens up the doors for the
possibility of a new breed of intelligent applications. An intelligent application is
one that does not need custom code to handle various circumstances. Instead,
it learns business rules directly from the data. Additionally, as business rules
change, intelligent applications are updated automatically by reprocessing the
models that represent the business logic.

Examples of intelligent applications are cross-sales applications that provide
insightful recommendations to your users, call center applications that show
only customers with a reasonable chance of making a purchase, and order-entry
systems that validate data as it is entered without any custom code. These are
just the tip of the iceberg. The flexibility and extensibility of the SQL Server
Data Mining programming model will excite the creativity of the developer,
leading to the invention of even more types of intelligent applications.

Chapter 15 explained that the core communication protocol for Analysis
Services is XML for Analysis (XMLA). This protocol provides a highly flexible,
platform-independent method for accessing your data mining server. Every-
thing that can be done between the client and the server can be done through
XMLA. However, just because you can do it the hard way doesn’t mean that
you have to.

This chapter reviews programming interfaces and object models that make
it easy to write data mining applications using Analysis Services. All the
examples use Visual C# .NET to demonstrate how to implement typical data
mining tasks with the appropriate interface for each task, and how to use
some special features of SQL Server data mining to exploit data mining
programming to the fullest.

497

Maclennan c16.tex V2 - 10/03/2008 5:48pm Page 498

498 Chapter 16 ■ Programming SQL Server Data Mining

Sample code and data sets for this chapter are included in Chapter16.zip,
which you can download from the book’s companion website (www.wiley.com/
go/data_mining_SQL_2008/). The archive contains the following:

A SQL Server 2008 database backup containing the data sets used in this
chapter

Three projects demonstrating the different APIs presented in this chapter

In this chapter, you learn about the following:

APIs and their application to data mining

Using Analysis Services APIs

Creating and managing data mining objects using Analysis Management
Objects (AMO)

Data Mining Client programming with ActiveX Data Objects (Multidi-
mensional) (ADO MD) for .NET (ADOMD.NET)

Writing server-side stored procedures with Server ADOMD.NET

Data Mining APIs

If you were to list the various application programming interfaces (APIs)
for SQL Server Data Mining, you would get a dizzying array of acronyms.
To make things even more confusing, many of the names were chosen
not because of their functions, but to provide brand affinity with existing
technologies. Table 16-1 describes the major APIs used in Analysis Services
programming.

N O T E See Books Online for full documentation and samples of all APIs used by
Analysis Services.

ADO
ADO was created to assist the Visual Basic programmer in accessing data
residing in databases. The ADO libraries wrap the OLE DB interfaces into
objects that are easier to program against. Because OLE DB for Data Mining
specifies that a data mining provider must be an OLE DB provider, ADO
can be used to execute data mining queries just as it does relational database
queries.

Excerpted from Data with Mining SQL Server 2008
ISBN: 9780470277744, Posted with permission, Wiley Publishing

Maclennan c16.tex V2 - 10/03/2008 5:48pm Page 499

Data Mining APIs 499

Table 16-1 SQL Server Mining APIs

API COMPLETE NAME DESCRIPTION

OLE DB OLE for Databases Microsoft standard API for accessing
database objects from within any application
that supports COM/ActiveX technology. It is
typically used in native languages such as
C++. It is supported via the Microsoft OLE
DB Provider for Analysis Services 10.0.

ADO ActiveX Data Objects Friendly and easy-to-use wrapper on top of
OLE DB. It provides access to data objects
(including data mining) from native
languages such as Visual Basic. It works on
top of any OLE DB provider, in particular on
top of the Microsoft OLE DB provider for
Analysis Services 10.0.

ADO.NET ActiveX Data Objects
for .NET

.NET (managed) version of the ADO library. It
is a friendly and easy-to-use managed
wrapper on top of OLE DB. Just like its native
counterpart (ADO), it works on top of any
OLE DB provider, including Microsoft OLE DB
Provider for Analysis Services 10.0.

ADOMD.NET ActiveX Data Objects
(Multidimensional)
for .NET

.NET (managed) dedicated provider for
Analysis Services. It works only with Analysis
Services and does not use OLE DB. It has the
same ease of access as ADO.NET, but it is
optimized for Analysis Services operations,
and offers various specific classes and
interfaces. It provides access to Analysis
Services data objects from managed
languages such as Visual Basic .NET, C#, and
J#.

Server ADOMD
.NET

Server ActiveX Data
Objects
(Multidimensional)

Provides access to Analysis Services data
objects from user-defined functions running
inside the server.

AMO Analysis Management
Objects

A management interface for Analysis
Services that provides objects for performing
operations such as creation, processing, and
so on.

DMX Data Mining
Extensions

Extensions to SQL to support data mining
operations.

(continued)

Maclennan c16.tex V2 - 10/03/2008 5:48pm Page 500

500 Chapter 16 ■ Programming SQL Server Data Mining

Table 16-1 (continued)

API COMPLETE NAME DESCRIPTION

OLE DB/DM Object Linking and
Embedding for
Databases for Data
Mining

The name of the specification that defines
the DMX language. It introduces the concept
of data mining models as database objects.

XMLA XML for Analysis A communication protocol and XML format
for communicating with an analytical server
independent of any platform. It is supported
by Microsoft Analysis Services and
constitutes the main communication
protocol between any client API and the
server.

ADO reduces the complexity of OLE DB interfaces to the following three
essential objects:

The connection object is used to connect to the server and issue schema
rowset queries.

The command object is used to execute DMX statements and optionally
retrieve their results.

The record set object contains the result of any data-returning queries.

ADO.NET
ADO.NET is the managed data access layer. It was created to allow managed
languages (such as Visual Basic .NET and C#) to access data, much as ADO
was created for native languages. The philosophy of ADO.NET is somewhat
different from that of ADO in that ADO.NET is designed to work in a
disconnected mode, where data can be accessed and manipulated without
maintaining an active connection to the server. When work is completed,
a connection can be established, and all the appropriate updates will be
propagated to the server (providing that there is server support for such
behavior).

ADO.NET is more modular than ADO. ADO works in one way and that
way only and contains special code to interact with the SQL Server provider
better than other providers. ADO.NET provides generic objects that work
with any OLE DB provider and allows providers to create their own managed
providers for data interaction. For example, SQLADO.NET contains objects
optimized for interacting specifically with SQL Server, and similar managed
providers can be written for any data source.

ADO.NET contains connection and command objects, which is similar to
ADO. However, ADO.NET introduces the data set object for data interaction.

Excerpted from Data with Mining SQL Server 2008
ISBN: 9780470277744, Posted with permission, Wiley Publishing

Maclennan c16.tex V2 - 10/03/2008 5:48pm Page 501

Data Mining APIs 501

A data set is a cache of the server data contained in a set of data tables that
can be independently updated or archived as XML. You would typically use
data adapters to load data sets — either the generic adapter that is supplied
with ADO.NET or a provider-specific adapter such as SQLDataAdapter. For
direct data access, ADO.NET uses a data reader (similar in concept to the ADO
record set) returned from its command object.

ADOMD.NET
ADOMD.NET is a managed data provider that implements the data adapter
and data reader interfaces of ADO.NET specifically for Analysis Services, mak-
ing it faster and more memory-efficient than the generic ADO.NET objects.
In addition to the standard ADO.NET interfaces, ADOMD.NET contains data
mining and OLAP-specific objects, making programming Data Mining Client
applications easier.

The MiningStructure, MiningModel, and MiningColumn collections make it
easy to extract the metadata that describes the objects on the server. The
MiningContentNode object allows for the programmatic browsing of mining
models, and can be accessed from the root of the content hierarchy or randomly
from any node in the content.

N O T E There is also a native version of ADOMD.NET, appropriately named
ADOMD. This interface is maintained mostly for backward compatibility with SQL
Server 2000 and does not contain any objects or interfaces for data mining
programming.

Server ADOMD.NET
Server ADOMD.NET is a managed object model for accessing Analysis Server
objects (both data mining and OLAP) directly on the server. It is intended for
use in user-defined functions and stored procedures, described later in this
chapter.

AMO
AMO is the main management interface for Analysis Services. It replaces
the SQL Server 2000 interface, Decision Support Objects (DSO), which is
still maintained for backward compatibility but has not been updated to
take advantage of all the new features of SQL Server 2005 and SQL Server
2008.

Like ADOMD.NET, AMO contains the MiningStructures, MiningModels,
and MiningColumns collections, and the like. However, whereas ADOMD.NET
is for browsing and querying, AMO is for creating and managing. You can use
AMO to perform programmatically all the operations you perform in the user

Maclennan c16.tex V2 - 10/03/2008 5:48pm Page 502

502 Chapter 16 ■ Programming SQL Server Data Mining

interfaces of Business Intelligence Development Studio (BI Dev Studio) or SQL
Server Management Studio. In fact, the management operations of both user
interfaces were written using AMO.

N O T E You should use ADOMD.NET when writing Data Mining Client applications
except when .NET is not available. Otherwise, use ADO (or OLE DB) for Windows
applications, or plain XMLA for thin client applications. For applications in which
you will be creating new models or managing existing models, use AMO. Note that
AMO does not allow the execution of queries (such as prediction queries).

Using Analysis Services APIs

Whenever you need to access any of the APIs for Analysis Services, you must
ensure that you add the appropriate references to your project. Table 16-2 lists
many of the APIs with the required references.

Table 16-2 Analysis Services References

API TYPE REFERENCES

ADO Native Microsoft ActiveX Data Objects

ADOMD.NET Managed Microsoft.AnalysisServices.AdomdClient

Server ADOMD.NET Managed Microsoft.AnalysisServices.AdomdServer

AMO Managed Microsoft.AnalysisServices
Microsoft.DataWarehouse.Interfaces

To make your coding easier, add a library reference at the top of your source
files so that you don’t have to specify the fully qualified name for every object.
For VB.NET, add the following:

Imports Microsoft.AnalysisServices

Or for C#, add the following:

Using Microsoft.AnalysisServices

Using Microsoft.AnalysisServices to Create
and Manage Mining Models

In this section, you will learn how to use AMO to create and manage data
mining objects (models and structures). The examples use the MovieClick

dataset and the goal is to analyze the way different generations of customers
use various channels.

Excerpted from Data with Mining SQL Server 2008
ISBN: 9780470277744, Posted with permission, Wiley Publishing

Maclennan c16.tex V2 - 10/03/2008 5:48pm Page 503

Using Microsoft.AnalysisServices to Create and Manage Mining Models 503

If your programming interest lies only in embedding data mining into client
applications, you can skip this section.

The simplest way to create mining models is to use DMX statements such
as CREATE MINING MODEL and INSERT INTO with any of the command interfaces
such as ADO, ADO.NET, or ADOMD.NET. Although that method has the
advantage of simplicity, features such as custom column bindings and OLAP
mining models (among others) are not accessible through the command-based
APIs. Therefore, to ensure that your application can take advantage of all
that SQL Server Data Mining has to offer, the recommended API for creating
complex mining models is AMO. In fact, the creating, editing, and managing
tools included in BI Dev Studio and SQL Server Management Studio were
written with AMO.

Figure 16-1 shows the major AMO objects used for data mining program-
ming. These objects will be used in the code samples throughout the AMO
section of this chapter.

AMO Basics
AMO is a straightforward object model placed on top of the XML representa-
tion of Analysis Services objects. In addition to providing a convenient API,
AMO provides basic validation and methods to update, change, and monitor
objects on the server.

N O T E To add AMO code to your project, you must add references to two
assemblies: Microsoft.AnalysisServices and Microsoft.DataWarehouse

.Interfaces. Add the following line of code to the top of your source files so that
you don’t have to specify the fully qualified name for every object. For VB.NET, add:

Imports Microsoft.AnalysisServices

Or for C#, add:

Using Microsoft.AnalysisServices

Every object in AMO implements the NamedComponent interface, which
supplies Name, ID, and Description properties as well as a Validate method.
An object’s ID is its immutable identifier that cannot be changed after it is set.
This is useful when you’re developing user applications with fixed objects.
It allows users to arbitrarily change object names for their own needs, while
providing a consistent way for your code to reference objects.

MajorObject inherits NamedComponent. MajorObject adds the Update and
Refresh methods to update the server with local changes. NamedComponent
refreshes the local model with the server contents. Additionally,Major-Objects
has methods to access referring and dependent objects, and contains an
Annotations collection for arbitrary user extensions. The Role object is an
example of a MajorObject.

Maclennan c16.tex V2 - 10/03/2008 5:48pm Page 504

504 Chapter 16 ■ Programming SQL Server Data Mining

MiningModelColumn

Server

Databases

Database

Datasources

Datasource

Datasourceviews

Datasourceview

System.Data.Dataset

MiningStructures

Columns

MiningModelColumn

Columns

MiningModel

MiningModels

Roles

Traces

Assemblies

DatabasePermissions

Figure 16-1 Partial AMO object hierarchy

Excerpted from Data with Mining SQL Server 2008
ISBN: 9780470277744, Posted with permission, Wiley Publishing

Maclennan c16.tex V2 - 10/03/2008 5:48pm Page 505

Using Microsoft.AnalysisServices to Create and Manage Mining Models 505

ProcessableMajorObject inherits MajorObject, adding methods and prop-
erties to process the object and determine the processed state and last processed
time. MiningStructure is an example of a Processable-MajorObject.

AMO Applications and Security
Because AMO is generally a management API, certain permissions must be
present for users to use any AMO-based application. Obviously, any user with
administrative permissions (members of the server Administrator role) will
have access through AMO, but users with more restrictive permissions can
also have limited access.

N O T E To perform certain operations, such as iterating objects, using AMO, you
may need a higher level of permission than when using a command API, such as
ADOMD.NET. This is because ADOMD.NET and other APIs use database schemas to
access objects, rather than metadata definitions.

Table 16-3 describes the permissions necessary for a user to perform any
function through AMO.

Table 16-3 AMO Permissions

FUNCTION TO PERFORM PERMISSION REQUIRED

Iterate objects Access and Read Definition

View object definitions Access and Read Definition

Modify objects Administrator

Process objects Access, Read Definition, and Process

Add or delete objects Administrator

Set permissions Administrator

Receive traces Administrator

N O T E You can test security in your application by impersonating roles or
specific users. Set the Effective Roles property in your connection string to a
comma-delimited set of roles you want to impersonate, or set the Effective

Username connection string property to the name of the user. Note that only
server administrators can connect with these properties.

For example, you could use the following:

svr.Connect("location=localhost;" _ &

"Initial Catalog=MyDatabase;Effective Roles=LimitedAccessRole")

Maclennan c16.tex V2 - 10/03/2008 5:48pm Page 506

506 Chapter 16 ■ Programming SQL Server Data Mining

Object Creation
To create mining models programmatically using AMO, you perform all the
same steps you would perform if you were creating and managing the models
in the user interface. That is, create a database, data source, data source view,
mining structure, and mining model.

To create any object on the server, you generally perform the following
steps:

1. Instantiate the object.

2. Set the object Name and ID properties.

3. Set the object-specific properties.

4. Add the object to its parent container.

5. Call Update to the object or its parent.

For example, Listing 16-1 demonstrates how to connect to a local server and
create a database.

// Connect to the Analysis Service server

Server svr = new Server();

svr.Connect("localhost");

CreateDatabase();

Database CreateDatabase()

{

// Create a database and set the properties

Database db = new Database();

db.Name = "Chapter 16";

db.ID = "Chapter 16";

// Add the database to the server and commit

svr.Databases.Add(db);

db.Update();

return db;

}

Listing 16-1 Database creation

N O T E For simplicity, the rest of the listings in this chapter that include AMO
sample code assume that svr is a member variable containing a connected
Analysis Services server object.

Excerpted from Data with Mining SQL Server 2008
ISBN: 9780470277744, Posted with permission, Wiley Publishing

Maclennan c16.tex V2 - 10/03/2008 5:48pm Page 507

Using Microsoft.AnalysisServices to Create and Manage Mining Models 507

Creating Data Access Objects

After you have an Analysis Services database object, the next step is to create
Datasource and DatasourceView (DSV) objects. The Datasource object is fairly
trivial, consisting of little more than a connection string to your database. The
DSV is a bit more complicated. The main element of the DSV is the schema,
which is a standard Dataset object augmented with custom properties.

To load a schema into a DSV, you create data adapters for each of the tables
you want to load and add their schemas into a data set. You then add any
relationships necessary, and finally add the data set to a DSV, which is then
added to the AMO database.

Listing 16-2 demonstrates this procedure by creating a Datasource object
for the MovieClick data (which is included in the Chapter 16 sample database,
available in the Chapter16.zip archive for this chapter at www.wiley.com/go/
data_mining_SQL_2008) and a DSV that can be used to create mining models
with a nested table needed for analysis of movie channels.

void CreateDataAccessObjects(Database db)

{

// Create a relational data source

// by specifying the name and the id

RelationalDataSource ds = new RelationalDataSource("MovieClick",

Utils.GetSyntacticallyValidID("MovieClick", typeof(Database)));

ds.ConnectionString = "Provider=SQLNCLI10.1;Data Source=localhost;

Integrated Security=SSPI;Initial Catalog=Chapter 16";

db.DataSources.Add(ds);

// Create connection to datasource to extract schema to a dataset

DataSet dset = new DataSet();

SqlConnection cn = new SqlConnection("Data Source=localhost; Initial

Catalog=Chapter 16; Integrated Security=true");

// Create data adapters from database tables and load schemas

SqlDataAdapter daCustomers = new SqlDataAdapter(

"SELECT * FROM Customers", cn);

daCustomers.FillSchema(dset, SchemaType.Mapped, "Customers");

SqlDataAdapter daChannels = new SqlDataAdapter(

"SELECT * FROM Channels", cn);

daChannels.FillSchema(dset, SchemaType.Mapped, "Channels");

// Add relationship between Customers and Channels

DataRelation drCustomerChannels = new DataRelation(

"Customer_Channels",

Listing 16-2 Data access object creation

Maclennan c16.tex V2 - 10/03/2008 5:48pm Page 508

508 Chapter 16 ■ Programming SQL Server Data Mining

dset.Tables["Customers"].Columns["SurveyTakenID"],

dset.Tables["Channels"].Columns["SurveyTakenID"]);

dset.Relations.Add(drCustomerChannels);

// Create the DSV, ad the dataset and add to the database

DataSourceView dsv = new DataSourceView("SimpleMovieClick",

"SimpleMovieClick");

dsv.DataSourceID = "MovieClick";

dsv.Schema = dset.Clone();

db.DataSourceViews.Add(dsv);

// Update the database to create the objects on the server

db.Update(UpdateOptions.ExpandFull);

}

Listing 16-2 (continued)

T I P The ID of a MajorObject (database, data source, mining model, and others)
must respect a set of syntactic restrictions. For example, certain special characters
such as ? or ! cannot appear in a valid object ID. The
Utils.GetSyntacticallyValidID function included in AMO generates a
syntactically valid identifier starting from a given name and should always be used
in real applications to generate valid IDs. It is only for simplicity reasons that this
function is not used in the other code samples in this chapter.

The DSV in Listing 16-2 contains the Customers table and the Channels

table, but the models you want to build need more specific information than
is present in the raw data — in particular, the generation that the customers
belong to (such as Baby Boomer or GenX) and a list of the premium movie
channels they watch. To accomplish this, you must modify the code to add
a calculated column to the Customers table, and swap out the Channels table
with a named query that returns only the limited set of channels you are
interested in.

Listing 16-3 contains CreateDataAccessObjects modified with a named
calculation and named query.

void AddNewDataAccessObjects(Database db)

{

// Create connection to datasource cto extract schema to a dataset

DataSet dset = new DataSet();

SqlConnection cn = new SqlConnection("Data Source=localhost;

Listing 16-3 Creating calculated columns and named queries

Excerpted from Data with Mining SQL Server 2008
ISBN: 9780470277744, Posted with permission, Wiley Publishing

Maclennan c16.tex V2 - 10/03/2008 5:48pm Page 509

Using Microsoft.AnalysisServices to Create and Manage Mining Models 509

Initial Catalog=Chapter 16; Integrated Security=true");

// Create the Customers data adapter with the calculated appended

SqlDataAdapter daCustomers = new SqlDataAdapter(

"SELECT *, " +

"(CASE WHEN (Age < 30) THEN ’GenY’ " +

" WHEN (Age >= 30 AND Age < 40) THEN ’GenX’ " +

"ELSE ’Baby Boomer’ END) AS Generation " +

"FROM Customers", cn);

daCustomers.FillSchema(dset, SchemaType.Mapped, "Customers");

// Add Extended properties to the Generation column indicating to

// Analysis Services that it is a calculated column

DataColumn genColumn = dset.Tables["Customers"].Columns

["Generation"];

genColumn.ExtendedProperties.Add("DbColumnName", "Generation");

genColumn.ExtendedProperties.Add("Description",

"Customer generation");

genColumn.ExtendedProperties.Add("IsLogical", "true");

genColumn.ExtendedProperties.Add("ComputedColumnExpression",

"CASE WHEN (Age < 30) THEN ’GenY’ " +

"WHEN (Age >= 30 AND Age < 40) THEN ’GenX’ " +

"ELSE ’Baby Boomer’ END");

// Create a ’Pay Channels’ data adapter with a customer query

// for our named query

SqlDataAdapter daPayChannels = new SqlDataAdapter(

"SELECT * FROM Channels " +

"WHERE Channel IN (’Cinemax’, ’Encore’, ’HBO’, ’Showtime’, " +

"’STARZ!’, ’The Movie Channel’)", cn);

daPayChannels.FillSchema(dset, SchemaType.Mapped, "PayChannels");

// Add Extended properties to the PayChannels table indicating to

// Analysis Services that it is a named query

DataTable pcTable = dset.Tables["PayChannels"];

pcTable.ExtendedProperties.Add("IsLogical", "true");

pcTable.ExtendedProperties.Add("Description",

"Channels requiring an additional fee");

pcTable.ExtendedProperties.Add("TableType", "View");

pcTable.ExtendedProperties.Add("QueryDefinition",

"SELECT * FROM Channels " +

"WHERE Channel IN (’Cinemax’, ’Encore’, ’HBO’, ’Showtime’, " +

"’STARZ!’, ’The Movie Channel’)");

// Add relationship between Customers and PayChannels

DataRelation drCustomerPayChannels = new DataRelation(

"CustomerPayChannels",

dset.Tables["Customers"].Columns["SurveyTakenID"],

Listing 16-3 (continued)

Maclennan c16.tex V2 - 10/03/2008 5:48pm Page 510

510 Chapter 16 ■ Programming SQL Server Data Mining

dset.Tables["PayChannels"].Columns["SurveyTakenID"]);

dset.Relations.Add(drCustomerPayChannels);

// Access the data source and the DSV created previously

// by specifying the ID

DataSourceView dsv = new DataSourceView("MovieClick", "MovieClick");

dsv.DataSourceID = "MovieClick";

dsv.Schema = dset.Clone();

db.DataSourceViews.Add(dsv);

// Update the database to create the objects on the server

db.Update(UpdateOptions.ExpandFull);

}

Listing 16-3 (continued)

Creating the Mining Structure
The next step in the data mining program is to create the mining structure
that describes the domain of the problem in terms the data mining engine
understands. You must create MiningStructureColumns and specify their data
types, content types, and data bindings to their source columns in the DSV.
Listing 16-4 contains the code to create a mining structure that will allow you
to analyze the relationships between generation and premium channels.

MiningStructure CreateMiningStructure(Database db)

{

// Initialize a new mining structure

MiningStructure ms = new MiningStructure(

"PayChannelAnalysis", "PayChannelAnalysis");

ms.Source = new DataSourceViewBinding("MovieClick");

// Create the columns of the mining structure

// setting the type, content and data binding

// User Id column

ScalarMiningStructureColumn UserID = new

ScalarMiningStructureColumn("UserId", "UserId");

UserID.Type = MiningStructureColumnTypes.Long;

UserID.Content = MiningStructureColumnContents.Key;

UserID.IsKey = true;

// Add data binding to the column

UserID.KeyColumns.Add("Customers", "SurveyTakenID",

System.Data.OleDb.OleDbType.Integer);

Listing 16-4 Creating the mining structure

Excerpted from Data with Mining SQL Server 2008
ISBN: 9780470277744, Posted with permission, Wiley Publishing

Maclennan c16.tex V2 - 10/03/2008 5:48pm Page 511

Using Microsoft.AnalysisServices to Create and Manage Mining Models 511

// Add the column to the mining structure

ms.Columns.Add(UserID);

// Generation column

ScalarMiningStructureColumn Generation = new

ScalarMiningStructureColumn("Generation", "Generation");

Generation.Type = MiningStructureColumnTypes.Text;

Generation.Content = MiningStructureColumnContents.Discrete;

// Add data binding to the column

Generation.KeyColumns.Add("Customers", "Generation",

System.Data.OleDb.OleDbType.WChar);

// Add the column to the mining structure

ms.Columns.Add(Generation);

// Add Nested table by creating a table column and adding

// a key column to the nested table

TableMiningStructureColumn PayChannels = new

TableMiningStructureColumn("PayChannels", "PayChannels");

PayChannels.ForeignKeyColumns.Add("PayChannels", "SurveyTakenID",

System.Data.OleDb.OleDbType.Integer);

ScalarMiningStructureColumn Channel = new

ScalarMiningStructureColumn("Channel", "Channel");

Channel.Type = MiningStructureColumnTypes.Text;

Channel.Content = MiningStructureColumnContents.Key;

Channel.IsKey = true;

// Add data binding to the column

Channel.KeyColumns.Add("PayChannels", "Channel",

System.Data.OleDb.OleDbType.WChar);

PayChannels.Columns.Add(Channel);

ms.Columns.Add(PayChannels);

// Add the mining structure to the database

db.MiningStructures.Add(ms);

ms.Update();

return ms;

}

Listing 16-4 (continued)

N O T E You may wonder why you specify that the column content is Key and also
have to set the IsKey property to True. This is because of the extensibility in the
content types defined in the OLE DB for Data Mining specification. Currently,
Analysis Services supports three types of keys: Key, Key Time, and Key

Sequence. Having a separate IsKey property allows you to take advantage of this
extensibility in the future.

Maclennan c16.tex V2 - 10/03/2008 5:48pm Page 512

512 Chapter 16 ■ Programming SQL Server Data Mining

Creating the Mining Models
Finally, you are at the point where you can create the models you want to use
to analyze your customers. In addition to a collection of columns, a structure
contains a collection of models. For each model, you add the columns you
want from the structure and set their usage to Key, Predict, or PredictOnly.
Columns without a specified usage are assumed to be Input, so you do not
need to explicitly set them. For columns that you want the algorithm to ignore,
you simply do not add them to the model.

Listing 16-5 demonstrates how to create two models inside the structure
you previously built. A parameterized cluster model is created, and then a tree
model is built from a copy of that model.

void CreateModels(MiningStructure ms)

{

MiningModel ClusterModel;

MiningModel TreeModel;

MiningModelColumn mmc;

// Create the Cluster model and set the algorithm

// and parameters

ClusterModel = ms.CreateMiningModel(true,

"Premium Generation Clusters");

ClusterModel.Algorithm = "Microsoft_Clustering";

ClusterModel.AlgorithmParameters.Add("CLUSTER_COUNT", 0);

// The CreateMiningModel method adds

// all the structure columns to the collection

// Copy the Cluster model and change the necessary properties

TreeModel = ClusterModel.Clone();

TreeModel.Name = "Generation Trees";

TreeModel.ID = "Generation Trees";

TreeModel.Algorithm = "Microsoft_Decision_Trees";

TreeModel.AlgorithmParameters.Clear();

TreeModel.Columns["Generation"].Usage = "Predict";

TreeModel.Columns["PayChannels"].Usage = "Predict";

// Add an aliased copy of the PayChannels table to the trees model

mmc = TreeModel.Columns.Add("PayChannels_Hbo_Encore");

mmc.SourceColumnID = "PayChannels";

mmc = mmc.Columns.Add("Channel");

mmc.SourceColumnID = "Channel";

mmc.Usage = "Key";

// Now set a filter on the PayChannels_Hbo_Encore table and use it

Listing 16-5 Adding mining models to the structure
Excerpted from Data with Mining SQL Server 2008
ISBN: 9780470277744, Posted with permission, Wiley Publishing

Maclennan c16.tex V2 - 10/03/2008 5:48pm Page 513

Using Microsoft.AnalysisServices to Create and Manage Mining Models 513

// as input to predict other channels

TreeModel.Columns["PayChannels_Hbo_Encore"].Filter =

"Channel=’HBO’ OR Channel=’Encore’";

// Set a complementary filter on the payChannels predictable

// nested table

TreeModel.Columns["PayChannels"].Filter =

"Channel<>’HBO’ AND Channel<>’Encore’";

ms.MiningModels.Add(TreeModel);

// Submit the models to the server

ClusterModel.Update();

TreeModel.Update();

}

Listing 16-5 (continued)

Processing Mining Models
The code for processing an object is trivial, consisting only of the Process

method called with the appropriate options. In the example program, you
could process an individual model, the mining structure, or the entire database
as you choose. However, because processing can be a rather lengthy task, it
would be nice to receive progress messages from the server for the duration.
Luckily, the AMO contains a Trace object to handle this type of server inter-
action. Listing 16-6 demonstrates setting up a progress trace for a processing
operation.

void ProcessDatabase(Database db)

{

Trace t;

TraceEvent e;

// create the trace object to trace progress reports

// and add the column containing the progress description

t = svr.Traces.Add();

e = t.Events.Add(TraceEventClass.ProgressReportCurrent);

e.Columns.Add(TraceColumn.TextData);

t.Update();

// Add the handler for the trace event

t.OnEvent += new TraceEventHandler(ProgressReportHandler);

try

{

// start the trace, process of the database, then stop it

t.Start();

Listing 16-6 Processing the database with progress reports

Maclennan c16.tex V2 - 10/03/2008 5:48pm Page 514

514 Chapter 16 ■ Programming SQL Server Data Mining

db.Process(ProcessType.ProcessFull);

t.Stop();

}

catch (System.Exception /*ex*/)

{

}

}

void ProgressReportHandler(object sender, TraceEventArgs e)

{

Console.WriteLine(e[TraceColumn.TextData]);

}

Listing 16-6 (continued)

DETERMINING SERVER CAPABILITIES

When you’re creating models on the server, it is useful to understand exactly
what kinds of models you can create. Besides the built-in algorithms, there may
be plug-in algorithms installed as well. Additionally, each algorithm supports a
variety of parameters whose default values may vary depending on the server
configuration, for example between the Standard and Enterprise editions of
SQL Server.

The MINING SERVICES and MINING PARAMETERS schema rowsets exposed by
Analysis Services contain descriptions of the available algorithms and their capa-
bilities. You can use any client command API to access these schemas, or even
better, you can use the object model provided in ADOMD.NET to iterate quickly
through the server’s data mining capabilities. The following code demonstrates
how to iterate through the mining services and their respective parameters:

public void DiscoverServices()

{

AdomdConnection connection = new AdomdConnection(

"Data Source=localhost");

connection.Open();

foreach(MiningService ms in connection.MiningServices)

{

Console.WriteLine("Service: " + ms.Name);

foreach(MiningServiceParameter mp in

ms.AvailableParameters)

{

Console.WriteLine(" Parameter: " + mp.Name +

" Default: " + mp.DefaultValue);

}

}

connection.Close();

}

Excerpted from Data with Mining SQL Server 2008
ISBN: 9780470277744, Posted with permission, Wiley Publishing

Maclennan c16.tex V2 - 10/03/2008 5:48pm Page 515

Using Microsoft.AnalysisServices to Create and Manage Mining Models 515

Deploying Mining Models
After creating your models, you may find that you need to move them around
to different servers. For example, you may need to move them from an
analytical server to a production server for embedding into line-of-business
applications, or maybe simply to share a model with a colleague who cannot
physically access your servers.

Analysis Services provides a robust backup-and-restore API in AMO. How-
ever, these APIs are geared more toward OLAP objects than toward data
mining objects. The APIs contain many options that are unnecessary for data
mining and operate solely at the database level, which is generally too coarse
for most data mining operations.

Because of the mismatch in the functionality provided and the functionality
required in AMO, the deployment of data mining objects is handled through
DMX via a command API. Using the DMX EXPORT and IMPORT commands, you
can select the single model that performs best out of the forest of candidate
models you created and deploy it alone, rather than deploying the entire
database.

Listing 16-7 demonstrates how you can use ADOMD.NET to transfer indi-
vidual models from your current server to your production server.

public void TransferModel()

{

// Create connections to the source and destination server.

AdomdConnection cnSource = new AdomdCommand(

"Data Source=localhost; Initial Catalog=Chapter 16");

AdomdConnection cnDest = new AdomdCommand(

"Data Source=ProductionServer; Initial Catalog=Chapter 16");

try

{

// Export the model to a share on the destination server.

AdomdCommand cmdExport = new AdomdCommand();

cmdExport.Connection = cnSource;

cmdExport.CommandText =

"EXPORT MINING MODEL GenerationTree " +

"TO ’\\\\ProdutionServer\\Transfer\\GenerationTree.abk’ " +

"WITH PASSWORD= ’MyPassword’";

cnSource.Open();

cmdExport.ExecuteNonQuery();

// Import the model into the current database on the

// destination server.

AdomdCommand cmdImport = new AdomdCommand();

cmdImport.Connection = cnDest;

cmdImport.CommandText = "IMPORT FROM " +

" ’c:\\Transfer\\GenerationTree.abk’ " +

Listing 16-7 Exporting and importing mining models

Maclennan c16.tex V2 - 10/03/2008 5:48pm Page 516

516 Chapter 16 ■ Programming SQL Server Data Mining

" WITH PASSWORD= ’MyPassword’ ";

cnDest.Open();

cmdImport.ExecuteNonQuery();

}

catch(Exception /*ex*/)

{

}

cnSource.Close();

cnDest.Close();

}

Listing 16-7 (continued)

In this example, you simply move one model between servers. The EXPORT

command is flexible enough to export multiple models or entire mining
structures as well. If you need to reprocess the models on the destination
server, you can append INCLUDEDEPENDENCIES to the EXPORT command, and the
necessary Datasource and DSV objects will be included in the export package.

N O T E Because OLAP objects do not support object-level importing and
exporting, you cannot use the EXPORT command to export OLAP mining models.

Setting Mining Permissions
After the models are built, processed, and deployed, you must assign per-
missions so that they can be accessed by client applications. Permissions in
Analysis Services are managed by the coordination of two objects: a Role

object (which belongs to the database and contains a list of members) and a
Permission object belonging to the protected object (which refers to a role and
specifies the access permissions of that role). Listing 16-8 demonstrates the
creation of a role and assigning permissions.

void SetModelPermissions(Database db, MiningModel mm)

{

// Create a new role and add members

Role r = new Role("ModelReader", "ModelReader");

r.Members.Add(new RoleMember("redmond\\jamiemac"));
r.Members.Add(new RoleMember("redmond\\zhaotang"));
r.Members.Add(new RoleMember("redmond\\bogdanc"));

// Add the role to the database and update

Listing 16-8 Assigning mining model permissions

Excerpted from Data with Mining SQL Server 2008
ISBN: 9780470277744, Posted with permission, Wiley Publishing

Maclennan c16.tex V2 - 10/03/2008 5:48pm Page 517

Browsing and Querying Mining Models 517

db.Roles.Add(r);

r.Update();

// Create a permission object referring the role

MiningModelPermission mmp = new MiningModelPermission();

mmp.Name = "ModelReader";

mmp.ID = "ModelReader";

mmp.RoleID = "ModelReader";

// Assign access rights to the permission

mmp.Read = ReadAccess.Allowed;

mmp.AllowBrowsing = true;

mmp.AllowDrillThrough = true;

mmp.ReadDefinition = ReadDefinitionAccess.Allowed;

// Add permission to the model and update

mm.MiningModelPermissions.Add(mmp);

mmp.Update();

}

Listing 16-8 (continued)

Browsing and Querying Mining Models

Creating and deploying models is only the beginning. The real fun starts when
you take the power of the learned knowledge of your models and embed
that directly into your applications. You can recommend products, manage
inventory, forecast revenue, validate data, and perform countless other tasks
limited only by your data and your imagination.

Predicting with ADOMD.NET
Let’s start with an example of a basic prediction query using ADOMD.NET.
Listing 16-9 demonstrates a typical example of query execution. Readers famil-
iar with ADO.NET will notice that the only differences between the APIs thus
far are the names of the data access classes. In fact, it is equally possible to
use the ADO.NET classes to perform simple queries against Analysis Services.
However, ADOMD.NET is optimized to work with the Analysis Services
server and allows you to take advantage of additional Analysis Services
features.

Maclennan c16.tex V2 - 10/03/2008 5:48pm Page 518

518 Chapter 16 ■ Programming SQL Server Data Mining

public void SimplePredictionQuery()

{

AdomdConnection connection = new AdomdConnection();

connection.ConnectionString =

"Data Source=localhost; Initial Catalog=Chapter 16";

connection.Open();

AdomdCommand cmd = connection.CreateCommand();

cmd.CommandText =

"SELECT Predict(Generation) FROM [Generation Trees] " +

"NATURAL PREDICTION JOIN " +

"(SELECT " +

" (SELECT ’Cinemax’ AS Channel UNION " +

" SELECT ’Showtime’ AS Channel) AS PayChannels " +

") AS T ";

// execute the command and display the prediction result

AdomdDataReader reader = cmd.ExecuteReader();

if (reader.Read())

{

string predictedGeneration = reader.GetValue(0).ToString();

Console.WriteLine(predictedGeneration);

}

reader.Close();

connection.Close();

}

Listing 16-9 Executing a simple singleton prediction query

For simplicity, the rest of the code samples in this chapter assume that the
containing class has a connection member variable of type AdomdConnection,
which holds an initialized connection.

Use ExecuteReader when executing queries that return multiple columns
or rows, as shown in Listing 16-10. This performs the same prediction as in
Listing 16-9, but it returns the flattened result of PredictHistogram so that you
can see the likelihood of all possible prediction results.

public void MultipleRowQuery()

{

AdomdCommand cmd = connection.CreateCommand();

cmd.CommandText =

"SELECT FLATTENED PredictHistogram(Generation) " +

"FROM [Generation Trees] " +

"NATURAL PREDICTION JOIN " +

"(SELECT " +

Listing 16-10 Iterating a multiple-row result
Excerpted from Data with Mining SQL Server 2008
ISBN: 9780470277744, Posted with permission, Wiley Publishing

Maclennan c16.tex V2 - 10/03/2008 5:48pm Page 519

Browsing and Querying Mining Models 519

" (SELECT ’Cinemax’ AS Channel UNION " +

" SELECT ’Showtime’ AS Channel) AS PayChannels " +

") AS T ";

AdomdDataReader reader = cmd.ExecuteReader();

try

{

for (int i = 0; i < reader.FieldCount; i++)

{

Console.Write(reader.GetName(i) + "\t");
}

Console.WriteLine();

while (reader.Read())

{

for (int i = 0; i < reader.FieldCount; i++)

{

object value = reader.GetValue(i);

string strValue = (value == null) ?

string.Empty : value.ToString();

Console.Write(strValue + "\t");
}

Console.WriteLine();

}

}

finally

{

reader.Close();

}

}

Listing 16-10 (continued)

N O T E If your application reuses an AdomdConnection object for multiple
queries, then you should ensure that any AdomdDataReader object is closed. A
connection cannot execute a command while a reader is opened on that
connection, and an exception thrown while reading data (and not handled
properly) may lead to a leaked open reader that makes the connection unusable.
The finally block at the end of the iteration in Listing 16-10 guarantees that the
connection member variable is still available and in a valid state, even if reading
from the reader throws an exception.

In the preceding example, you flatten the results of a nested table query
for ease of iteration. In some situations, however, flattening the results is not
practical. For example, this is not practical if you have a query that returns
multiple nested tables, or even nested tables inside nested tables. Listing 16-11
demonstrates how to iterate the results of the previous example with the
FLATTENED keyword removed.

Maclennan c16.tex V2 - 10/03/2008 5:48pm Page 520

520 Chapter 16 ■ Programming SQL Server Data Mining

while (reader.Read())

{

for(int i = 0; i < reader.FieldCount; i++)

{

// Check for nested table columns

if (reader.GetFieldType(i) == typeof(AdomdDataReader))

{

// fetch the nested data reader

AdomdDataReader nestedReader = reader.GetDataReader(i);

while (nestedReader.Read())

{

for (int j = 0; j < nestedReader.FieldCount; j++)

{

object value = nestedReader.GetValue(j);

string strValue = (value == null) ?

string.Empty : value.ToString();

Console.Write(strValue);

}

Console.WriteLine();

}

// close the nested reader

nestedReader.Close();

}

}

}

Listing 16-11 Iterating the Attribute column of the nested PredictHistogram result

Everything that you’ve done thus far could also have been done with
ADO.NET (albeit, less efficiently). Next, you’ll expand your application’s
functionality by using a parameterized query to change the prediction input.
ADO.NET does not support named parameters for providers other than the
SQL Server relational engine. To use named parameters in your data mining
query, you must use ADOMD.NET, as demonstrated in Listing 16-12.

cmd.CommandText =

"SELECT Predict(Generation) FROM [Generation Trees] " +

"NATURAL PREDICTION JOIN " +

"(SELECT " +

" (SELECT @Channel1 AS Channel UNION " +

" SELECT @Channel2 AS Channel) AS PayChannels " +

") AS T ";

AdomdParameter p1 = new AdomdParameter();

p1.ParameterName = "Channel1";

Listing 16-12 Data mining query with named parameters

Excerpted from Data with Mining SQL Server 2008
ISBN: 9780470277744, Posted with permission, Wiley Publishing

Maclennan c16.tex V2 - 10/03/2008 5:48pm Page 521

Browsing and Querying Mining Models 521

p1.Value = "Cinemax";

cmd.Parameters.Add(p1);

AdomdParameter p2 = new AdomdParameter();

p2.ParameterName = "Channel2";

p2.Value = "Showtime";

cmd.Parameters.Add(p2);

Listing 16-12 (continued)

Listing 16-12 assumes that you allow and require only two channels to
perform the prediction. Obviously, this is not always the case. ADOMD.NET
allows you use a parameter to pass an entire table as the input data source. This
enables you to easily perform predictions using data that is on the client or
otherwise unavailable to the server. Multiple table parameters may be shaped
together to represent nested tables. Listing 16-13 demonstrates how you can
use shaped table parameters as prediction input.

AdomdCommand cmd = connection.CreateCommand();

cmd.CommandText =

"SELECT Predict(Generation) FROM [Generation Trees] " +

"NATURAL PREDICTION JOIN " +

"SHAPE { @CaseTable } " +

" APPEND({ @NestedTable } RELATE CustID TO CustID) " +

" AS PayChannels " +

"AS T ";

DataTable caseTable = new DataTable();

caseTable.Columns.Add("CustID", typeof(int));

caseTable.Rows.Add(0);

DataTable nestedTable = new DataTable();

nestedTable.Columns.Add("CustID", typeof(int));

nestedTable.Columns.Add("Channel", typeof(string));

nestedTable.Rows.Add(0, "Cinemax");

nestedTable.Rows.Add(0, "Showtime");

AdomdParameter p1 = new AdomdParameter();

p1.ParameterName = "CaseTable";

p1.Value = caseTable;

cmd.Parameters.Add(p1);

AdomdParameter p2 = new AdomdParameter();

Listing 16-13 Data mining query with table parameters

Maclennan c16.tex V2 - 10/03/2008 5:48pm Page 522

522 Chapter 16 ■ Programming SQL Server Data Mining

p2.ParameterName = "NestedTable";

p2.Value = nestedTable;

cmd.Parameters.Add(p2);

// execute the command and display the prediction result

AdomdDataReader reader = cmd.ExecuteReader();

if (reader.Read())

{

string predictedGeneration = reader.GetValue(0).ToString();

Console.WriteLine(predictedGeneration);

}

reader.Close();

Listing 16-13 (continued)

N O T E The SHAPE statement builds a hierarchical rowset out of two flat rowsets,
based on a parent-child relationship between the two rowsets. In Listing 16-13,
the parent-child relationship links the CustID column in the top rowset (the
CaseTable parameter) to the CustID column in the child rowset (the
NestedTable parameter). A value of 0 is used in both rowsets to link Cinemax

and Showtime together as nested table rows for a single top-level data row.

More on Table-Valued Parameters in ADOMD.NET
Listing 16-13 introduced table-valued parameters (in the form of DataTable
objects) and used them for predictions. Table-valued parameters (also called
rowset parameters in Books Online and various Analysis Service materials) are
a very powerful feature of SQL Server Data Mining, because they allow data
mining on any kind of application data.

Table-valued parameters may be used in prediction queries (such as in
Listing 16-13), as well as in training mining structures and models (in conjunc-
tion with the DMX INSERT INTO statement). This allows applications to build
mining models on-the-fly, without the need to stage the data in a relational
database first. This feature is extensively used in the Table Analysis Tools for
Excel 2007 add-in discussed in Chapter 2.

Note that a table-valued parameter need not be a .NET DataTable object.
In .NET, a table-valued parameter may also be an implementation of the
IDataReader interface, commonly implemented by various data access tools
(such as ADO.NET). This allows Analysis Services to perform data mining on
relational data that is not accessible because of network constraints.

Consider the scenario shown in Figure 16-2. An application has access
to a local database and also to an Analysis Services HTTP endpoint, which
resides outside of the local network. In this configuration, it is not possible to
define binding on the Analysis Services server (bindings pointing to the local
Excerpted from Data with Mining SQL Server 2008
ISBN: 9780470277744, Posted with permission, Wiley Publishing

Maclennan c16.tex V2 - 10/03/2008 5:48pm Page 523

Browsing and Querying Mining Models 523

database). Therefore, the standard AMO method of building mining models
cannot be used.

Web HTTP
connection

Local
database

ADOMD .NET
application

Analysis Services
(HTTP endpoint)

Figure 16-2 Data mining query with table parameters

However, the application may use table-valued parameters to upload train-
ing data from the local database to the Analysis Services instance. Listing 16-14
shows the code required to do this.

// Prepare one connection for each of the queries

SqlConnection relationalCnTop = new SqlConnection(

"Data Source=localhost; Initial Catalog=Chapter 16;" +

"Integrated Security=true");

SqlConnection relationalCnNested = new SqlConnection(

"Data Source=localhost; Initial Catalog=Chapter 16;" +

"Integrated Security=true");

// Open the local relational connections

relationalCnTop.Open();

relationalCnNested.Open();

SqlCommand cmdTop = relationalCnTop.CreateCommand();

SqlCommand cmdNested = relationalCnNested.CreateCommand();

// Prepare the relational queries

cmdTop.CommandText =

"SELECT [SurveyTakenID], "+

" (CASE WHEN (Age < 30) THEN ’GenY’ "+

" WHEN (Age >= 30 AND Age < 40) THEN ’GenX’ "+

" ELSE ’Baby Boomer’ END) AS Generation " +

"FROM Customers " +

"ORDER BY [SurveyTakenID]";

cmdNested.CommandText =

"SELECT * FROM Channels " +

" WHERE Channel IN (’Cinemax’, ’Encore’, ’HBO’, " +

" ’Showtime’, ’STARZ!’,

’The Movie Channel’) " +

Listing 16-14 Uploading training data with table-valued parameters

Maclennan c16.tex V2 - 10/03/2008 5:48pm Page 524

524 Chapter 16 ■ Programming SQL Server Data Mining

" ORDER BY [SurveyTakenID] ";

// Create an Adomd command for Analysis Services

AdomdCommand cmd = connection.CreateCommand();

// Unprocess the mining structure, to make sure INSERT INTO

will work

cmd.CommandText = "DELETE FROM PayChannelAnalysis";

cmd.ExecuteNonQuery();

// Now prepare the INSERT INTO command

cmd.CommandText = "INSERT INTO PayChannelAnalysis(" +

"UserId, Generation, PayChannels(SKIP, Channel)) " +

"SHAPE { @CaseTable } " +

" APPEND({ @NestedTable } RELATE SurveyTakenID TO

SurveyTakenID) " +

"AS PayChannels";

// Add table valued parameters to the Adomd command

// The parameters are added as IDataReader objects

AdomdParameter p1 = new AdomdParameter();

p1.ParameterName = "CaseTable";

p1.Value = (IDataReader)cmdTop.ExecuteReader();

cmd.Parameters.Add(p1);

AdomdParameter p2 = new AdomdParameter();

p2.ParameterName = "NestedTable";

p2.Value = (IDataReader)cmdNested.ExecuteReader();

cmd.Parameters.Add(p2);

// Execute the training query

cmd.ExecuteNonQuery();

// close the relational connections

relationalCnTop.Close();

relationalCnNested.Close();

Listing 16-14 (continued)

Listing 16-14 uses two relational connections (to a local relational database)
to execute two queries: one for the top-level data and one for the nested table
data. The query results are passed to the AdomdCommand object as IDataReader
objects, a forward-only interface that does not cache all the rows in memory (as
in the case of a data table). Therefore, large volumes of data may be uploaded
to Analysis Services without overloading the memory of the client application.

Excerpted from Data with Mining SQL Server 2008
ISBN: 9780470277744, Posted with permission, Wiley Publishing

Maclennan c16.tex V2 - 10/03/2008 5:48pm Page 525

Browsing and Querying Mining Models 525

Browsing Models
ADOMD.NET provides a rich object model for browsing the content and
metadata of the mining objects on a server that are otherwise accessible only
through schema rowsets. Figure 16-3 shows the major data mining objects of
ADOMD.NET.

MiningModelColumns

AdomdConnection

MiningModels

MiningParameters

MiningModelColumns

MiningStructures

MiningColumnValues

MiningServices

MiningContentNodes

MiningService

MiningAttributes

MiningServiceParameters

Figure 16-3 Data mining object hierarchy in ADOMD.NET

As you can see from the object model, you can simply connect to the server
and iterate over any of the data mining objects without having to resort to
schema queries. A nice benefit to application developers is that if a connected
user does not have access to a particular object, that object will simply not
appear in its collection (as if it didn’t exist).

The most interesting thing you gain by using the ADOMD.NET object model
is the capability to iterate mining model content in a natural, hierarchical

Maclennan c16.tex V2 - 10/03/2008 5:48pm Page 526

526 Chapter 16 ■ Programming SQL Server Data Mining

manner using objects instead of trying to unravel the flat schema rowset form.
Using this object model makes it easy to write complex programs to explore
or display the content to your users. For example, an interesting problem for
the Microsoft Decision Trees algorithm is to find all of the trees that contain a
split on a given attribute.

Listing 16-15 demonstrates how you can use the content object model to
explore trees and find splits on a specified attribute. First, you identify all
child nodes of the root that represents trees, and then recursively check the
children of the trees to see whether their marginal rule contains the requested
attribute. By looking at the node type rather than at the algorithm used, this
function will work against any model that contains trees, whether it uses the
Microsoft Decision Trees algorithm, the Microsoft Time Series algorithm, or
any third-party tree-based algorithm.

// Identify all the attributes that split on a specified attribute

public void FindSplits(string ModelID, string AttributeName)

{

// Access the model and throw an exception if not found

// The error text will be propagated to the client

MiningModel model = connection.MiningModels[ModelID];

if (model == null)

{

throw new System.Exception("Model not found");

}

// Look for the attribute in all model trees

foreach (MiningContentNode node in model.Content[0].Children)

{

if (node.Type == MiningNodeType.Tree)

{

FindSplits(node, AttributeName);

}

}

}

// Recursively search for the attribute among content nodes

// return when children are exhausted or attribute is found

private void FindSplits(MiningContentNode node, string AttributeName)

{

// Check for the attribute in the MarginalRule

// and add row to the table if found

if (node.MarginalRule.Contains(AttributeName))

{

Console.WriteLine(node.Attribute.Name);

return;

}

Listing 16-15 Exploring content using ADOMD.NET
Excerpted from Data with Mining SQL Server 2008
ISBN: 9780470277744, Posted with permission, Wiley Publishing

Maclennan c16.tex V2 - 10/03/2008 5:48pm Page 527

Stored Procedures 527

// recurse over child nodes

foreach (MiningContentNode childNode in node.Children)

{

FindSplits(childNode, AttributeName);

}

}

Listing 16-15 (continued)

You can also use the PredictNodeId function to find the reason for a
prediction. For example, you can use the following query to retrieve the ID of
the node used to generate the prediction:

SELECT Predict(Generation), PredictNodeId(Generation) ...

You can then feed the result of this query into a function such as the one
shown in Listing 16-16.

public string GetPredictionReason(string ModelID, string NodeID)

{

// return the node description

if (connection.MiningModels[ModelID] == null)

throw new Exception("Model not found");

MiningContentNode node =

connection.MiningModels[ModelID].GetNodeFromUniqueName(NodeID);

if(node == null)

throw new Exception("Node not found");

return node.Description;

}

Listing 16-16 Using ADOMD.NET to find the reason behind a prediction

Stored Procedures

ADOMD.NET provides an excellent object model for accessing server objects
and browsing content. However, there are some major drawbacks.

For the FindSplits method in Listing 16-15, you must bring the entire
content from the server to the client to determine the list. A model with 1,000
trees and 1,000 nodes per tree would require the marshaling of more than
1,000,000 rows, even if only a handful of trees referenced the desired attribute.
Also, in the GetPredictionReason function, even though you can access the
desired node directly using GetNodeFromUniqueName, you are still causing a
round trip to the server on each call. Performing this operation in batch mode
is not recommended.

Maclennan c16.tex V2 - 10/03/2008 5:48pm Page 528

528 Chapter 16 ■ Programming SQL Server Data Mining

There is a solution to these problems. Analysis Services, starting with SQL
Server 2005 (and continuing in SQL Server 2008) supports stored procedures
that can be written in any managed language such as C#, VB.NET, or managed
C++. The object model is almost identical to the object model of ADOMD.NET,
making conversion between the two models simple. The clear advantage of
Server ADOMD.NET is that all of the content is available on the server, and
you can return only the information you need to the server. You can call
user-defined functions (UDFs) by themselves, using the CALL syntax or as part
of a DMX query. For example, the following query calls a stored procedure
directly and simply returns the result:

CALL Chapter16SP.TreeHelper.FindSplits(’Generation Trees’,’HBO’)

The following query calls a stored procedure for every row returned from
the prediction query:

SELECT Predict(Generation),

[Chapter16SP].TreeHelper.GetPredictionReason(PredictNodeId(Generation))

...

In this case, the query will return the prediction result, plus the explanation
of the result for every row.

CALLING VBA AND EXCEL FUNCTIONS AS STORED PROCEDURES

If you have Microsoft Office installed on the same machine as your Analysis
Services server, you can leverage the functions of Visual Basic for Applications
(VBA) and Excel as stored procedures inside your DMX queries.

For example, you can convert the prediction output to lowercase like this:

SELECT LCase(Predict([Generation])) FROM [Generation Trees]

PREDICTION JOIN

If a function exists in both Excel and VBA, you must prefix the function name
with the name of the function. For example, to get the base 10 log of a
prediction from Excel, and the natural log of the prediction from VBA, you
would issue a query like this:

SELECT Excel!Log(Predict(Sales)), VBA!Log(Predict(Sales))

From MyModel

If an Excel function or VBA function also exists in MDX or DMX, or contains a
$ character, you must escape the function name with square brackets ([]). For
example, to format a prediction as currency (such as $20.56), you would issue a
query like this:

SELECT [Format](Predict(Sales), ’$d.dd’) FROM MyModel

The supported VBA and Excel functions are listed in Appendix B.

Excerpted from Data with Mining SQL Server 2008
ISBN: 9780470277744, Posted with permission, Wiley Publishing

Maclennan c16.tex V2 - 10/03/2008 5:48pm Page 529

Stored Procedures 529

Writing Stored Procedures
After you reference the required assembly (Microsoft.AnalysisServices
.AdomdServer), you have access to a global object called Context. This object
is similar to the ADOMD.NET connection object in that it contains all col-
lections of major objects (such as MiningModels) that you can access in
your stored procedure. The server-side Context object exposes a property,
CurrentMiningModel,with no correspondent in the client side object model.
This property provides the model that is the subject of the query and can be
used in user-defined functions, as you will see in one of the procedures in
Listing 16-17.

Stored procedures can take any simple type as a parameter and can return
simple types or even a DataTable or DataSet in response. A client using
CALL to call a stored procedure that returns a simple type will not receive a
value, although the stored procedure will be executed. A client calling a stored
procedure inside a prediction query that returns a DataTable or DataSet will
receive a nested table containing the returned rows.

SENDING COMPLEX TYPES TO STORED PROCEDURES

If you need to send complex types (such as structures or arrays) to a stored
procedure, you can serialize them using the System.Xml.

Serialization.XmlSerializer object on the client and send them as a
string. On the server side, deserialize the structure or array and call an
overloaded function using the complex types you are interested in. For
example, you may have a function that requires an array of the following type:

public struct MyType

{

public int a;

public string b;

}

You could write the following function to serialize the array into an XML
string and send that string as a parameter to a stored procedure:

public string SerializeMyTypeArray(MyType[] arr)

{

System.Xml.Serialization.XmlSerializer s =

new System.Xml.Serialization.XmlSerializer(arr.GetType());

System.IO.StringWriter sw = new System.IO.StringWriter();

s.Serialize(sw, arr);

string str = sw.ToString();

}

On the server side, you would need to duplicate the type definition and write
a stub function to deserialize the array and call the real function, as follows:

public DataTable MySProc(string xmlString)

{

(continued)

Maclennan c16.tex V2 - 10/03/2008 5:48pm Page 530

530 Chapter 16 ■ Programming SQL Server Data Mining

SENDING COMPLEX TYPES TO STORED PROCEDURES (continued)

MyType[] arr = null;

System.Xml.Serialization.XmlSerializer s =

new System.Xml.Serialization.XmlSerializer(typeof

(MyType[]));

System.IO.StringReader sr = new

System.IO.StringReader(xmlString);

arr = s.Deserialize(sr);

return MySProc(arr);

}

protected DataTable MySProc(MyType[] arr)

{

...

}

This strategy will allow you to pass complex types and will prepare you for
future versions that may allow complex types to be naturally passed.

Depending on the complexity of your data, you may want to use built-in .NET
data types that support serialization (such as a DataSet object).

Stored Procedures and Prepare Invocations

When writing a procedure to be executed on the server, you need to know
when you are being called to return a result versus when you are being called
simply to gather schema information during a prepare call. Additionally, you
need to indicate that your procedure is safe to call during a prepare operation
and that calling it won’t have any undesirable side effects. You wouldn’t want
to create the same object twice, for example.

The Context object contains an ExecuteForPrepare property that you can
check before performing any time-consuming operations in your procedure. If
you are returning a DataTable or DataSet, you should fully define the objects
and return them empty of data so the client will know the schema. In general,
you should not raise errors during preparation, especially for missing objects,
because the prepare call could be used during a batch query, and the objects
may exist by the time the procedure is called to return a result.

To indicate that your procedure does not have any unwanted side effects,
you must add the custom attribute SafeToPrepare.

A Stored Procedure Example
Listing 16-17 demonstrates a stored procedure written in C#. The methods are
the same as in Listing 16-15 and 16-16, but they are modified to operate on
the server, take into account the presence of the Context object, and properly
handle situations where the procedure is called during a prepare operation.

Excerpted from Data with Mining SQL Server 2008
ISBN: 9780470277744, Posted with permission, Wiley Publishing

Maclennan c16.tex V2 - 10/03/2008 5:48pm Page 531

Stored Procedures 531

[SafeToPrepare(true)]

public DataTable FindSplits(string ModelID, string AttributeName)

{

// Create the result table and add a column for

// the attribute

DataTable tblResult = new DataTable();

tblResult.Columns.Add("Attribute", typeof(string));

// If this is a Prepare statement, return the empty table

// for schema information

if (Context.ExecuteForPrepare)

return tblResult;

// Access the model and throw an exception if not found

// The error text will be propagated to the client

MiningModel model = Context.MiningModels[ModelID];

if (model == null)

{

throw new System.Exception("Model not found");

}

// Look for the attribute in all model trees

if (model.Content.Count > 0)

{

foreach (MiningContentNode node in model.Content[0].Children)

{

if (node.Type == MiningNodeType.Tree)

{

FindSplits(node, AttributeName, ref tblResult);

}

}

}

// return the table containing the full result

return tblResult;

}

private bool FindSplits(MiningContentNode node, string AttributeName,

ref DataTable tblResult)

{

// Check for the attribute in the MarginalRule

// and add row to the table if found

if (node.MarginalRule.Contains(AttributeName))

{

string[] row = new string[]{node.Attribute.Name};

tblResult.Rows.Add(row);

return true;

Listing 16-17 Data mining stored procedure

Maclennan c16.tex V2 - 10/03/2008 5:48pm Page 532

532 Chapter 16 ■ Programming SQL Server Data Mining

}

// recurse over child nodes

foreach (MiningContentNode childNode in node.Children)

{

if(FindSplits(childNode, AttributeName, ref tblResult))

{

return true;

}

}

return false;

}

[SafeToPrepare(true)]

public string GetPredictionReason(string NodeID)

{

// return immediately if executing for prepare

if (Context.ExecuteForPrepare)

return string.Empty;

// return the node description

return Context.CurrentMiningModel.GetNodeFromUniqueName(NodeID)

.Description;

}

Listing 16-17 (continued)

SUMMARY OF SIGNIFICANT DIFFERENCES BETWEEN ADOMD.NET AND
SERVER ADOMD.NET

Following is a summary of significant differences between ADOMD.NET and
Server ADOMD.NET:

◆ Many of the functions of the client-side Connection object are covered by
the Context object.

◆ There is no Console.WriteLine or any direct output on the server side.
Results must be collected in a DataTable before being returned to the
caller.

◆ Server-side code should handle statement preparation (the
SafeToPrepare attribute).

◆ The server-side object model uses the concept of a CurrentMiningModel,
which identifies the model targeted by the current query.

Excerpted from Data with Mining SQL Server 2008
ISBN: 9780470277744, Posted with permission, Wiley Publishing

Maclennan c16.tex V2 - 10/03/2008 5:48pm Page 533

Stored Procedures 533

Executing Queries inside Stored Procedures
A common use of a stored procedure is to encapsulate a query for easy reuse.
For example, if your application needs to predict Generation, but you need
the flexibility to change the model being used or add more business logic, you
could write a procedure that executes the query and redeploy the procedure
as necessary without changing the application layer.

Server ADOMD.NET allows you to execute DMX queries using the same
objects that you would use with ADOMD.NET. The only exception is that you
do not have to specify a connection, because you are already connected. You
can copy the results from the query into a DataTable, or you can simply return
the DataReader returned by ExecuteReader.

Listing 16-18 demonstrates the query from Listing 16-9 implemented as
a UDF.

using Microsoft.AnalysisServices.AdomdServer;

using System.Data;

...

[SafeToPrepare(true)]

public IDataReader PredictGeneration()

{

// Create a new AdomdCommand object

// Note how it does NOT use a connection. The command is implicitly

// connected to the database on which the stored procedure is invoked

AdomdCommand cmd = new AdomdCommand();

// Use an empty table to create a reader with the same shape

// as the result for Prepare

if (Context.ExecuteForPrepare)

{

DataTable tbl = new DataTable();

tbl.Columns.Add("Generation", typeof(string));

return tbl.CreateDataReader();

}

// Initialize the command with a query

cmd.CommandText =

"SELECT Predict(Generation) FROM [Generation Trees] " +

"NATURAL PREDICTION JOIN "+

"(SELECT " +

" (SELECT ’Cinemax’ AS Channel UNION " +

" SELECT ’Showtime’ AS Channel) AS PayChannels " +

") AS T ";

return cmd.ExecuteReader();

}

Listing 16-18 Executing a DMX query inside a stored procedure

Maclennan c16.tex V2 - 10/03/2008 5:48pm Page 534

534 Chapter 16 ■ Programming SQL Server Data Mining

In this example, if you want to change the model that’s performing the
prediction, you could just change the query inside the stored procedure,
without having to change queries embedded inside your application. Of
course, you can also parameterize your query as previously demonstrated in
Listing 16-12.

N O T E Stored procedures cannot be used to implement security in Analysis
Services. The security context of the current user determines the access to the
objects inside the Analysis Services server. That is, any user who calls a procedure
that queries a mining model but who does not have Read permission on that
model will receive a permission error. Similarly, a user who calls the
GetPredictionReason UDF from Listing 16-17 but who does not have Browse
permission on the model will also receive a permission error.

Returning Data Sets from Stored Procedures
Server-side procedures used as UDFs inside a query may return tabular-
or scalar-type data. Procedures invoked with CALL typically need to return
tabular content (that is, a DataTable or an IDataReader implementation).

Server-side stored procedures also have the ability to return DataSet objects
(including multiple data tables and possibly various relationships defined
between tables). DataSet results cannot be displayed in tabular result viewers
(such as SQL Server Management Studio, which treats them as strings),
but can be used programmatically. Listing 16-19 shows a server-side stored
procedure that returns a DataSet object, and Listing 16-20 shows the client-side
ADOMD.NET code that consumes the DataSet results.

public DataSet GetSimpleDependencyNet(string ModelID)

{

// define the first table in the data set

// It has two columns, AttributeID(int) and AttributeName (string)

DataTable tblAttributes = new DataTable();

tblAttributes.Columns.Add("AttributeID", typeof(int));

tblAttributes.Columns.Add("AttributeName", typeof(string));

// define the second table in the data set. Each row indicates a

// dependency in the net (an arrow).

// It has two numeric columns, each indicating the source attribute

// and the second indicating the target

DataTable tblRelationships = new DataTable();

tblRelationships.Columns.Add("From", typeof(int));

Listing 16-19 Stored procedure that computes a dependency network and returns it as
a DataSet object

Excerpted from Data with Mining SQL Server 2008
ISBN: 9780470277744, Posted with permission, Wiley Publishing

Maclennan c16.tex V2 - 10/03/2008 5:48pm Page 535

Stored Procedures 535

tblRelationships.Columns.Add("To", typeof(int));

// Access the model and throw an exception if not found

// The error text will be propagated to the client

MiningModel model = Context.MiningModels[ModelID];

if (model == null)

{

throw new System.Exception("Model not found");

}

// Build a hash table which contains all attributes and their IDs

Dictionary<string, int> dictAttributes = new

Dictionary<string, int>();

foreach (MiningAttribute att in model.Attributes)

{

dictAttributes.Add(att.Name, att.AttributeID);

}

// Now traverse all the predictable attributes, call the FindSplits

// procedure and insert the results in the table

foreach (MiningAttribute att in model.Attributes)

{

// Add one row to tblAttributes for each model attribute

object[] attributeRow = new object[2];

attributeRow[0] = att.AttributeID;

attributeRow[1] = att.ShortName;

tblAttributes.Rows.Add(attributeRow);

DataTable tblSplitsOnThisAttribute =

FindSplits(ModelID, att.ShortName);

// add one row to tblRelationships for each attribute that

// depends on the current one

object[] relationshipsRow = new object[2];

relationshipsRow[0] = att.AttributeID;

foreach (DataRow row in tblSplitsOnThisAttribute.Rows)

{

// FindSplits returns a 1-column table containing

// attribute names

string dependentAttribute = row[0] as string;

relationshipsRow[1] = dictAttributes[dependentAttribute];

tblRelationships.Rows.Add(relationshipsRow);

}

}

Listing 16-19 (continued)

Maclennan c16.tex V2 - 10/03/2008 5:48pm Page 536

536 Chapter 16 ■ Programming SQL Server Data Mining

// Add both tables to a data set object

DataSet ds = new DataSet();

ds.Tables.Add(tblAttributes);

ds.Tables.Add(tblRelationships);

// define a relationship inside the dataset

ds.Relations.Add("FromAttributeName",

tblAttributes.Columns["AttributeID"],

tblRelationships.Columns["From"]);

ds.Relations.Add("ToAttributeName",

tblAttributes.Columns["AttributeID"],

tblRelationships.Columns["To"]);

// return the data set

return ds;

}

Listing 16-19 (continued)

AdomdCommand cmd = connection.CreateCommand();

DataSet resultDS = null;

// Invoke the DataSet returning stored proc

cmd.CommandText =

"CALL [Chapter16SP].GetSimpleDependencyNet(’Generation Trees’)";

// The first value returned by the query is the data set

AdomdDataReader rdr = cmd.ExecuteReader();

if (rdr.Read())

{

object obj = rdr.GetValue(0);

if (obj is DataSet)

resultDS = (DataSet)obj;

}

rdr.Close();

DataTable tblAttributes = resultDS.Tables[0];

DataTable tblRelationships = resultDS.Tables[1];

DataRelation fromAttName = resultDS.Relations["FromAttributeName"];

DataRelation toAttName = resultDS.Relations["ToAttributeName"];

foreach (DataRow relRow in tblRelationships.Rows)

{

string attFrom =

Listing 16-20 Using ADOMD.NET to consume the DataSet results from a stored
procedure

Excerpted from Data with Mining SQL Server 2008
ISBN: 9780470277744, Posted with permission, Wiley Publishing

Maclennan c16.tex V2 - 10/03/2008 5:48pm Page 537

Stored Procedures 537

relRow.GetParentRow(fromAttName)["AttributeName"] as string;

string attTo =

relRow.GetParentRow(toAttName)["AttributeName"] as string;

Console.WriteLine(string.Format("{0} -> {1}", attFrom, attTo));

}

Listing 16-20 (continued)

The stored procedure presented in Listing 16-5 traverses all attributes in a
mining model and invokes the previously defined FindSplits procedure to
detect all attributes that depend on the current attribute (effectively building
a dependency network of all attributes in the mining model). The dependency
network is serialized in a data set that contains two tables: a table of the
attributes’ IDs and names, and a table of edges (directed dependencies between
attributes).

Deploying and Debugging Stored Procedure Assemblies
After you have compiled and built your stored procedure, you must deploy
the procedure to your Analysis Server so that you can call it from DMX. To add
a .NET assembly to your Analysis Services project, right-click the Assemblies
folder in Solution Explorer and select New Assembly Reference.

When deploying an assembly, you will need to select some security-related
options, such as Permissions and Impersonation information. The defaults
are functional for most scenarios. However, the discussion in this section
provides some details on these options.

The Permissions property specifies the code access permissions that are
granted to the assembly when it’s loaded by Analysis Services. The recom-
mended (and default) value is Safe. Table 16-4 shows the possible values
and their implications. As a developer of stored procedures, you may need
less-restrictive permissions (such as network access, if your stored procedure
attempts to connect to an external data source). As a system administrator, you
will need to decide what permissions would be best to balance your system’s
safety and functionality.

You can use the Impersonation property of an assembly when you require
the stored procedure code to run under certain credentials. However, you
cannot use Impersonation to control access to the internal object model. Object
model access is always performed under the credentials of the current user.
However, if your stored procedure connects to a remote database, you may
need to require your assembly to impersonate the current user.

When you deploy your project, your assembly is encoded and sent to
Analysis Server, where it is available for use in the project database. When you

Maclennan c16.tex V2 - 10/03/2008 5:48pm Page 538

538 Chapter 16 ■ Programming SQL Server Data Mining

need to update your assembly, you can simply redeploy it. If you are using a
live project, the assembly is immediately deployed on the server. To update an
assembly in a live project, delete the assembly and add it back to the project.

Table 16-4 Permissions for Stored Procedure Assemblies

VALUE DETAILS

Safe This is the most restrictive and safest permission set. The
code executed by the assembly cannot access external
system resources (files, the network, or the registry).

External access The assembly code may access files, the network, and the
registry.

Unrestricted The assembly code is completely unrestricted and may call
any managed or unmanaged code.

If you have a general-purpose assembly that you want to access across all
databases on the server, you can use SQL Server Management Studio to deploy
it at the server level. In Object Explorer, right-click the Assemblies collection of
the server, select Add Assembly, and then select the assembly you want to add.

Debugging assemblies is best done when you’re running the server and
client on the same machine. You can use a development license of SQL Server
for this purpose. To debug the assembly in Visual Studio, select Attach to
Process from the Debug menu. Select the executable msmdsrv.exe from the
list, and ensure that the dialog box displays Common Language Runtime as
the Attach To option. After you have followed these steps, you will be able to
set breakpoints in your stored procedures.

Summary

In this chapter, you learned about the variety of APIs that you can use to access
the functionality of Analysis Services programmatically. Although many APIs
are supported, the two most important APIs are AMO and ADOMD.NET. You
can use AMO to programmatically create, process, and manage your mining
models, structure, and servers. ADOMD.NET is the general client API for
browsing and prediction queries.

Using these APIs, you can create intelligent applications of your own. The
logic of your application can involve dynamically creating mining models to
solve user-defined problems. It can apply the predictive power of the data
mining algorithms or examine the learned content of the mining models to
provide new insights and new abilities to your users. You can also leverage

Excerpted from Data with Mining SQL Server 2008
ISBN: 9780470277744, Posted with permission, Wiley Publishing

Maclennan c16.tex V2 - 10/03/2008 5:48pm Page 539

Summary 539

your server in your application by writing UDFs that have access to all of the
server resources through a .NET programming model.

The sample code for this chapter is available at www.wiley.com/go/data

_mining_SQL_2008. It consists of three projects that exemplify AMO (the
AMO-Management project), ADOMD.NET (the ADOMD-BrowseAndQuery
project), and Server ADOMD.NET (theChapter16SPproject). The ADOMD.NET
sample application depends on the mining models and structure created by
the AMO application, as well as some stored procedures included in the
Server ADOMD.NET sample project. Therefore, the sample projects should
be built and deployed in this order: AMO, Server ADOMD.NET, and then
ADOMD.NET.

In Chapter 17, you will learn how to extend the set of features that are built
into Analysis Services, such as custom data mining algorithms and viewers.

Maclennan c16.tex V2 - 10/03/2008 5:48pm Page 540

Excerpted from Data with Mining SQL Server 2008
ISBN: 9780470277744, Posted with permission, Wiley Publishing

